• f
  • t
  • g
  • y
  • in
Technical Ceramics Have More Potential Than Plastic And Metal

Technical Ceramics Materials could replace metal and plastic as a material for high-tech components in many applications. But some designers and developers still have prejudices against the powerful material that has high temperature and corrosion resistance and can be economically processed thanks to modern processes such as injection molding and hybrid technology. The company UNIPRETEC reveals the potential of technical ceramics.

Whether as a rolling bearing for wind turbines, as a controller housing in household appliances, as piezoceramic sensor elements or as an insulating component in the lambda probe of a vehicle - products made of technical ceramics can meet designers and developers from different areas. Where other materials often reach their limits in sophisticated technical solutions, technical ceramics are the ideal material. With its favorable properties such as temperature resistance, dimensional stability, low wear and good electrical insulation, it is far more often predestined as a substitute for metal and plastic as many are aware. Thanks to advanced shaping processes such. With the ceramic injection molding complex geometries can now be realized. In addition to design advantages, this process also offers economic benefits in mass production.

Especially for reasons of cost, ceramics have hitherto been not much considered as a material for technical components. This is mainly due to the fact that there is different knowledge about the possible applications of the material by designers and developers and that numerous prejudices about ceramics are common. People normally says "Technical ceramics are expensive and break - we are always struggling with this prejudice."

Man should judge the technical ceramics more differentiated. It always depends on the specific form and the particular application. In the following content, misunderstandings about the high-performance ceramics will be dispelled and their properties will be clarified.

Misunderstanding 1: technical ceramics break easily

Flexural strength, compressive strength and critical stress intensity factor are the main indexes that describe the strength of ceramics. The critical stress intensity factor ("K1c") indicates how high the stress of a material may be before critical crack growth is generated. This material constant is therefore a measure of the tension that the ceramic still withstands before brittle fracture occurs. For aluminum titanate, the K1c value is at 1 MPa √m and in the yttria-stabilized zirconia is 8 MPa √m. In simple terms, it can be stated that materials with a high K1c value are highly resistant to the so-called "crack propagation".

The flexural strength is a value for the stress in a bent-stressed, elaborately prepared sample bar which, if exceeded, breaks. Thus, flexural strength is a material characteristic used to estimate the strength of ceramic materials. The bending strength of alumina, a commonly used ceramic material, is up to 580 MPa at a temperature of 25 °C; That of zirconium oxide is even 1000 MPa. In comparison, high-performance plastic Polyethylene (PEEK) has a flexural strength of up to 170 MPa and standard structural steel (S235JR) of 180 MPa.

Misunderstanding 2: technical ceramic components are more expensive

More production process steps of technical ceramics are necessary, which can generally lead to a higher unit price than comparable components made of plastic or metal. However, the initial cost of producing a ceramic product is a bit higher, but in the production process it becomes apparent that the integral effort is often absolutely comparable. Ceramic components are not only more efficient, but also more durable and therefore longer in life. The failure rate, for example, on machines is lower with ceramic components and maintenance is also reduced.

Related reading:Alumina Ceramic,Cordierite Ceramic

Get In Touch
Hot Products
  • Waterjet Cutting Intensifier Ceramic Plunger

    Zirconia Ceramic Plungers for Waterjet Intensifier

    Due to the ceramic's resistance to chemicals, heat, abrasion, and its low thermal expansion, etc., UNIPRETEC uses zirconia ceramic instead of SUS to make the plungers (pistons) for high pressure waterjet pump intensifier parts. We are specialized in making ceramic plungers that meet customers' needs in terms of roundness, straightness, surface roughness, etc., and improving work efficiency, product lifetime, and precision.

  • ceramic plunger

    Ceramic Plungers for Pump

    Due to the ceramic's resistance to chemicals, heat, abrasion, and its low thermal expansion, etc., UNIPRETEC uses ceramics instead of SUS to make plungers (pistons) for high pressure plunger pumps, automatic filling machines, medical controlled volume pumps, syringe pumps, etc. We are specialized in making ceramic plungers that meet customers' needs in terms of roundness, straightness, surface roughness, etc., and improving work efficiency, product lifetime, and precision.

  • zirconia frac plug button

    ZrO2 Zirconia Ceramic Frac Plug Buttons

    Zirconium dioxide, also known as zirconia and zirconium oxide, is a crystalline metal oxide that has found its way into the technical advanced ceramics industry. It is characterised by its high thermal resistivity, mechanical resistance, and abrasive properties.

  • Alumina Ceramics

    Alumina Ceramic Piston for High Pressure Washer Pump

    The ceramic pistons are made using the advanced aluminum oxide ceramic material that possesses high hardness, wear resistance, high temperature resistance, and corrosion resistance, ensuring consistent material performance.

  • boron nitride chamber

    Boron Nitride Plasma Chambers for Hall Effect Thrusters

    One common application for boron nitride is channels used in Hall-effect thrusters for satellites. A hall effect thruster combines an electric field with a magnetic field to ionize a gas flow to generate plasma. The electric field inside an annular channel accelerates the ions in the plasma to very high exhaust velocities.

  • boron nitride crucible

    BN Boron Nitride Crucible Liner

    Crucibles made of BN Boron Nitride are not wetted by molten metal liquids and can be used at temperature up to 2,000 degree C. BN ceramic crucibles own outstanding thermal shock resistance and are also non-electrically conductive. Choosing BN crucibles can bring you high quality sintering and long use life.

our Partners
Customer ERAMET
Customer INDO-MIM
Customer HealthCap
Partner Magna
Partner Knowles Electronics
Customer CTS
chat now
If you have questions or suggestions, please leave us a message,we will reply you as soon as we can!

Online Service